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ABSTRACT pixel will contain several vastly different surfaces: bare
soil, standing water, vegetation, parking lots, etc. HowThe strength of interaction among soil, plants, and atmosphere
does one assign appropriate values to bulk model pa-depends highly on scale. As the spatial scale of organized soil–plant

behavior (e.g., soil drying and/or stomatal closure) increases, so does rameters associated with strongly heterogeneous pixels?
the influence the land surface has on atmospheric properties and The issue becomes more complex when one considers
circulations. Counterbalancing this is a system of feedback loops that that it is not only the census of constituent surfaces
serve to reduce the sensitivity of surface fluxes to changes in surface within a model pixel, but also the specific spatial ar-
conditions. Model upscaling involves capturing land–atmosphere rangement of those surfaces that is important—patch-
feedbacks and effects of land surface heterogeneity on surface fluxes works of different scale and configuration can induce
and atmospheric boundary-layer dynamics that become operative at

edge effects, advection, and circulation that may be sig-progressively larger spatial scales. Conversely, by downscaling, we
nificant.learn how to appropriately parameterize subgrid-scale phenomena

Conversely, we need to also consider issues in down-within large-scale modeling frameworks. This paper discusses some
scaling from regional models, which are generally lessof the major challenges faced today in properly describing system

behavior at regional spatial scales. We focus on a suite of simple complex, to the landscape and field scales that are most
biophysical models , tied closely to remote sensing, that work synergis- useful in hydrologic, ecological, biological, and agricul-
tically from canopy to mesoscales. This suite includes a diagnostic tural applications (Jarvis, 1993). In fact, a modeling
regional-scale model used for routine mapping of flux and moisture framework that can operate in both upscaling and down-
conditions across the United States at 10-km resolution. A related scaling modes would provide the necessary capabilities
approach disaggregates regional flux estimates to local scales for addressing general scaling issues related to soil–
(100–102 m) for comparison with ground-based measurements or for

plant–atmosphere dynamics.use in site-specific agricultural or resource management applications.
This paper will focus on a suite of models that functionCoupled with turbulence- and mesoscale atmospheric models, the core

synergistically over a large range in spatial scales. Theseland surface representation provides means for assimilating remote
models emphasize both upscaling and downscaling ap-sensing data into large-eddy simulations and improving short-range

weather forecasts. This multiscale modeling framework is being uti- proaches using information provided by visible and ther-
lized in a concerted research effort aimed at identifying scale-relevant mal infrared remote sensing data, acquired at spatial
land–atmosphere feedbacks and representing surface heterogeneity resolutions from 1 m to 10 km.
efficiently and robustly in regional modeling schemes.

FROM LEAF TO LANDSCAPE
In well-ventilated growth chamber experiments,For environmental biophysicists, upscaling within

leaves tend to behave like test particles, with leaf-levelthe soil–plant–atmosphere continuum involves a
fluxes responding passively to external environmentalcascade or transport of knowledge between regimes of
forcings such as wind speed, radiation, temperature, hu-increasing spatial scale. How do landscapes behave dif-
midity, C concentration, and soil water content. How-ferently than isolated leaves or plants, for example, and
ever, when many leaves are assembled into the form ofhow do these differences in behavior affect how we
a plant or a canopy of plants and allowed to functionrepresent them in biophysical models? This is an impor-
in a natural environment, they will begin to activelytant question because we collect most of our detailed
modify the forcing fields in their immediate vicinity,information about plant behavior at the leaf level while
and these modifications can feed back significantly onmany of the practical modeling applications are at the
the bulk behavior of the leaf ensemble itself. Whenlandscape or larger scales. Models constructed to func-
these feedback systems are not considered in upscaledtion at a given scale can often serve to inform models at
models, canopy-level states, fluxes, and sensitivity toother scales but are not generally directly transportable
environmental changes (such as elevated ambient CO2between scales.
levels) can be misrepresented (Jacobs and DeBruin,A current challenge in biophysical upscaling lies in
1992, 1997; Carlson and Bunce, 1996; Bunce et al., 1997;dealing with model subpixel heterogeneity. As model
Jones, 1998; Raupach, 1998; Wilson et al., 1999; Gott-grid scale increases, so does the probability that a single
schalck et al., 2001).
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Table 1. Scale dependence of feedback.

Scale Scale size/grid resolution Control surface Feedback

Leaf A few cm Leaf boundary layer Decoupling by leaf boundary-layer resistance
Plant cm–m Compound leaf/cluster boundary layer Decoupling by leaf cluster boundary-layer resistance
Canopy 100 m–km Surface layer Decoupling by bulk canopy boundary-layer and

aerodynamic resistance
Landscape Several km ABL† ABL growth/entrainment; Large eddy circulations
Mesoscale 10–100 km Mid-troposphere Organized mesoscale circulations

† ABL, atmospheric boundary layer.

a long-standing dispute between plant physiologists and spiration rates become less sensitive to incremental
changes in stomatal resistance. However, large, abruptatmospheric scientists as to whether stomatal aperture

or radiation receipt is more important in controlling changes in stomatal resistance, due to moisture or heat
stress for example, can cause this feedback cycle totranspiration rates. The first paper looks at feedbacks

among stomatal conductance, transpiration, and humid- break down.
ity conditions. The second incorporates radiative cou-
pling—feedback between leaf temperature and net radi- Plant Scale
ation. Subsequent papers by other researchers (e.g., On the plant scale, leaves often grow in clusters withRaupach, 1998) have examined the coupling between overlapping boundary layers, so the modeling controlsurface temperature and atmospheric stability and other surface in this case must at least encompass the fullfeedback effects. These papers demonstrate that the compound leaf or cluster. The effective boundary-layerspatial scale over which plant behavior is organized and resistance (decoupling) for the cluster will be greateruniform determines the extent to which environmental than that of an individual leaf, so stomatal control ofself-modification occurs and the strength that these transpiration is further reduced at the plant scale (Jarvisfeedback cycles can attain. Scale of application also in- and McNaughton, 1986).fluences the level of detail that needs to be included
in biophysical models and where the model boundary Canopy Scaleconditions should be defined (Table 1).

Uniform fluxes from an extensive array of plants can
influence the microclimate both within and above theLeaf Scale
canopy. To ensure independent boundary conditions,Jarvis and McNaughton (1986) note that a single the reference height at this scale of modeling should liestoma opening and closing in isolation will have negligi- above the surface layer influenced by the canopy, atble effect on the microclimate at the leaf surface. How- the base of the well-mixed atmospheric boundary layerever, organized closure in some modest percentage of (ABL), ≈50 to 100 m above the surface. The plants arethe stomatal population across the leaf surface— decoupled from the free atmosphere by both the bulktriggered by changes in light intensity, CO2 concentra- leaf boundary-layer resistance and the aerodynamic re-tion, leaf water loss, or environmental stress (Collatz et sistance through the surface layer; so canopy-level tran-al., 1991; Collatz et al., 1992)—can significantly modify spiration is even less sensitive to fractional changes inthe temperature and humidity within the leaf boundary stomatal conductance than on the single plant scale andlayer (e.g., Ball et al., 1986). External boundary condi- more dependent on net radiation receipt (Jarvis andtions for leaf-scale models must therefore be defined McNaughton, 1986; McNaughton and Jarvis, 1991).outside the boundary layer where they are more or less Aerodynamically rough canopies (such as sparse for-independent of system fluxes in this context. ests) will in general be better coupled with the atmo-Inside the boundary layer, a negative feedback cycle sphere than will smooth, dense canopies (such as pas-serves to decrease the sensitivity of the leaf-scale tran- tures and grasslands) and will therefore retain tighterspiration flux to small changes in stomatal resistance. physiological control over transpiration rates (e.g., Jar-An incremental increase in the bulk stomatal resistance vis and McNaughton, 1986; Grantz and Meinzer, 1990;will decrease transpiration and reduce the humidity at Magnani et al., 1998; Wullschleger et al., 2000).the leaf surface. In turn, this increases the saturation

deficit of this boundary layer air with respect to the Landscape Scalesubstomatal cavities, thereby enhancing transpiration
and partially offsetting the original reduction. A frac- At landscape scales, the patchiness of vegetative be-

havior becomes increasingly important. Large patchestional change in stomatal resistance does not yield an
equivalent fractional change in transpiration, so stoma- of uniform surface behavior can affect the state of the

atmosphere all the way up to and beyond the top of thetal control is not absolute at the leaf scale.
Jarvis and McNaughton (1986) point out that the convective ABL—a few kilometers, vertically. Even at

this scale, there are feedback cycles that tend to stabilizestrength of this feedback cycle depends on how decou-
pled the leaf surface is from the external atmosphere. latent heat flux in the event of small changes in canopy

conductance. When sensible heating is increased due toAs the leaf boundary layer resistance becomes large
compared with the stomatal resistance, water vapor is widespread stomatal closure, the growth of the ABL is

accelerated, and hotter, drier air is entrained from abovemore effectively trapped near the leaf surface, and tran-
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the capping inversion. The saturation deficit in the ABL served wind speed, temperature, dew point, and precipi-
tation rates. Brutsaert (1984) reviews several analyticalincreases, and latent heating is enhanced. Especially

for surfaces with low canopy resistance, such as well- and numerical models that describe the adjustment of
internal boundary layers to step changes in surfacewatered crops, evapotranspiration (ET) becomes in-

creasingly radiation-driven at larger scales (Jarvis and roughness, wetness, and humidity, which can be useful in
determining case-specific fetch and measurement heightMcNaughton, 1986; McNaughton and Jarvis, 1991; Al-

bertson et al., 2001a). requirements for meteorological inputs to vegetation
models (see also, Klaassen, 1992).The power spectrum of atmospheric turbulence peaks

at the kilometer scale—around the scale height of the
ABL. At these scales, transport of scalars by large, tur-

CURRENT ISSUES IN SCALINGbulent eddies can become important, generating counter-
gradient fluxes that present challenges to traditional gra- The simplest (yet most improbable) case of modeling
dient transport theory. fluxes from homogeneous multikilometer scale surfaces

has been well studied. Many of the current challenges
in regional flux modeling lie in dealing with subpixelMesoscale
heterogeneity due, for example, to spatial variations inAt larger scales, complexity in modeling increasingly
canopy resistance, vegetation cover and type, topogra-shifts toward the atmospheric end of the soil–plant–
phy, cloud cover, and soil moisture.atmosphere continuum. Strong horizontal gradients in

First, what are the best ways to validate predictions ofsurface sensible and latent heating associated with sur-
regional-scale fluxes? Observations from ground-basedface inhomogeneities can induce organized mesoscale
flux towers, sampling spatial footprints on the order ofcirculations, like sea breezes, that can extend beyond
hundreds of meters, will often not be representative ofthe ABL and into the midtroposphere (Mahfouf et al.,
fluxes on the kilometer scale (see, e.g., Holwill and1987; Avissar and Pielke, 1989; Pinty et al., 1989; Pielke
Stewart, 1992; Divakarla, 1997). An aircraft can sampleet al., 1991; Segal and Arritt, 1992; Avissar and Liu,
a flux footprint of several kilometers (Schuepp et al.,1996). These circulations can influence cloud and pre-
1992), but such flights are logistically complicated andcipitation patterns (Anthes, 1984; Chen and Avissar,
expensive, and it is difficult to obtain large data sets over1994; Avissar and Liu, 1996; Freedman et al., 2001),
wide variety of surface conditions to facilitate extensivewhich may feed back measurably on upwelling surface
model validation.fluxes. One of the major fronts of research in upscaling

Next, how is it possible to assign a single value totoday is in identifying characteristic scales and strengths
a property like leaf area index or surface roughnessof patchiness leading to turbulent and mesoscale circu-
associated with a 10- to 100-km model grid cell? Radia-lations.
tive and turbulent fluxes are typically nonlinearly re-
lated to these types of critical input parameters, so usingImplications of Feedback to Modeling simple linear areal averages can introduce large errors
into regional-scale flux calculations (Avissar, 1992; Bo-Based on these considerations, Jarvis and McNaugh-

ton (Jarvis and McNaughton, 1986; McNaughton and nan et al., 1993; Li and Avissar, 1994; Kustas and Nor-
man, 2000a). Different parameter-averaging schemesJarvis, 1991; Jarvis, 1993, 1995) draw two important

conclusions regarding the implications of system feed- have been devised to preserve areal averages of differ-
ent surface states or fluxes (Lhomme, 1992; Lhommeback and scale on biophysical modeling.

First, because stomatal control over surface fluxes et al., 1994; McNaughton, 1994; Raupach and Finnigan,
1995; Chebouni et al., 1995; Chehbouni et al., 2000),tends to weaken with increasing patch size, vegetation

models designed for larger scales can often afford to be but there will generally be a compromise. For example,
McNaughton (1994) showed that an effective canopyless complex than leaf- or plant-scale models (see also

Avissar, 1993). Excessive model complexity may result resistance can be generated that will preserve scaled
estimates of ET or surface temperature but not both.in a large number of tunable parameters that cannot be

specified with acceptable accuracy over regional scales. A related question then is what scales and patterns
of inhomogeneity will tend to corrupt regional scaleIt can also lead to nonphysical or unstable solutions if

the model is not well tied to observations made at the fluxes computed from areally determined effective pa-
rameters? Shuttleworth (1988) and Raupach (1991)scale of application. Introducing scale-appropriate em-

pirical constraints can keep the model from wandering identify a scale threshold (≈10 km) distinguishing disor-
ganized or microscale surface heterogeneity from orga-into strange corners of solution space. A caveat is that

the model can then be used prudently only under the nized mesoscale heterogeneity. Above this threshold,
surface patterns such as widespread stomatal closureconditions in which the constraints were developed.

Second, model boundaries are ideally defined such can begin to have a significant influence on mean atmo-
spheric properties and dynamics. Different parameterthat they contain the full system of feedbacks effective

at the scale of operation. This ensures that the boundary aggregation rules may need to be developed for orga-
nized and disorganized landscapes (Shuttleworth, 1988;conditions are essentially independent of the system

itself. Canopy simulation studies using real weather data Raupach, 1991). Furthermore, scales and amplitudes
of heterogeneity must be identified that cause surface-should address the extent to which feedback from the

canopy itself has already been integrated into the ob- induced variations in atmospheric state, turbulence, and



ANDERSON ET AL.: UPSCALING IN THE SOIL–PLANT–ATMOSPHERE CONTINUUM 1411

large-scale circulation patterns to feed back on the sur- they are being used to fill current gaps in our under-
standing of scaling.face fluxes themselves.

Finally, because upscaling by definition requires char-
acterization of land surface conditions at large spatial A HEIRARCHY OF MODELS
scales, it will be useful to exploit available remote sens- A series of papers (Norman et al., 1995b, 2003; Ander-
ing information as fully and creatively as possible in son et al., 1997, 2000; Mecikalski et al., 1999) published
regional-scale modeling (Bastiaansen et al., 1998; Avis- over the last decade outlines a suite of simple biophysi-
sar, 1998). The thermal and microwave wavebands have cal models, tied closely to remote sensing, that work
been somewhat neglected compared with the enormous synergistically from canopy to mesoscales through mod-
effort that has been given to developing visible/near- ification of model boundary conditions (Fig. 1–2). These
infrared–based data products, but the information con- models are intended for diverse, routine applications
tent regarding surface state provided in the longer wave- and therefore attempt to balance the competing de-
lengths is becoming increasingly evident (e.g., Moran mands of generality and simplicity. They have been de-
et al., 1994; Gillies and Carlson, 1995; Anderson et al., signed to accommodate varying surface conditions while
1997; Kustas et al., 1998; Li and Islam, 1999; Boni et remaining computationally inexpensive and requiring
al., 2001; Moran, 2003). It may be that the biggest strides only a tractable array of surface parameters. This multi-
in remote sensing data assimilation in the next decade scale modeling framework is being utilized in a con-
will be made on the longer wavelength end of the elec- certed research effort aimed at identifying scale-relevant

land–atmosphere feedbacks and representing surfacetromagnetic spectrum.
heterogeneity efficiently and robustly in coupled models.Issues in upscaling and downscaling soil–plant–atmos-

At the core of each of these models is a two-layer orphere models are currently being addressed in three
two-source (plant � soil) land surface representationbroad foci of research, including the study of flux aggre-
coupling conditions inside the canopy to fluxes from thegation and disaggregation, the simulation of large-scale
soil, plants, and atmosphere.turbulent eddies and mesoscale circulations, and the

examination of means for assimilating disparate forms
ALEXof observational data into existing models. In the follow-

ing, we present a case study of modeling applications A diagram describing the forward, or prognostic, can-
opy-scale model of atmosphere–land exchange (ALEX)in these three fields of research and demonstrate how

Fig. 1. The genealogy of the ALEX multiscale modeling suite.
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Fig. 2. Schematic descriptions of (a) the ALEX model of sensible and latent heating and C assimilation fluxes, (b) the remote sensing two-source
model (TSM), (c) the regional-scale ALEXI model, and (d) disaggregated ALEXI (DisALEXI) model. ABL, atmospheric boundary layer.

of C, water, and heat is shown in Fig. 2a. The unique 1993; Ruimy et al., 1994; Prince and Goward, 1995)
are particularly well suited to application over largefeature of the ALEX model is its treatment of canopy

resistance, which exploits the conservative nature of geographical regions because they are founded on a
quantity that can be derived with reasonable accuracytranspiration and photosynthetic processes occurring on

the stand level. Instead of using a scaled numerical solu- from remote sensing: APAR (e.g., Kumar and Mon-
teith, 1981; Daughtry et al., 1983; Steinmetz et al., 1990;tion to several leaf-level photosynthetic equations (e.g.,

Sellers et al., 1996), canopy resistance in ALEX is com- Myneni et al., 1995a, 1995b). Furthermore, as discussed
above, system feedbacks at these larger scales causeputed using a second-order analytical expression (An-

derson et al., 2000) parameterized in terms of the canopy ET fluxes to be increasingly radiation-driven and less
sensitive to physiological control by surface vegetation.light use efficiency (LUE) and the absorbed photosyn-

thetically active radiation (APAR). This analytical solu- The effective LUE diagnosed by the analytical model
is typically near the nominal stand-level measurementtion agrees well with numerical solutions (Anderson et

al., 2000) but is computationally more efficient and sta- (an input parameter, indexed by vegetation class) but
responds to varying environmental conditions in humid-ble and uses fewer tunable parameters. And since it is

tied to a stand-level measurement—the canopy LUE— ity, temperature, CO2 concentration, and light quality.
Stomatal closure in response to water stress and extremethe solutions are constrained to lie within the realms

of observation. temperatures is simulated through incorporation of em-
pirical stress functions (Norman, 1979; Campbell andLight use efficiency has been measured for many dif-

ferent plant species and has been found to be fairly Norman, 1998). Hourly and daily estimates of ET and
C assimilation from the ALEX model agree well (toconservative within vegetation classes when the plants

are unstressed and when disparities in measurement within 15%) with micrometeorological measurements
made in six different vegetative stands (see Fig. 3). Thistechnique are accounted for (Monteith, 1977; Field,

1991; Arkebauer et al., 1994; Goetz and Prince, 1998; accuracy is comparable to the 10 to 20% instrumental
variation that Twine (1998) identified among microme-Gower et al., 1999; Anderson et al., 2000). Because

assimilation scaling effects are implicitly incorporated teorological flux measurements made during the South-
ern Great Plains 1997 field experiment (SGP97; Jacksoninto its measurement on the stand level, LUE can pro-

vide a valuable constraint to canopy resistance model- et al., 1999). Given its robustness and computational
efficiency, the ALEX model has been utilized in severaling. Models constrained by LUE (e.g., Potter et al.,



ANDERSON ET AL.: UPSCALING IN THE SOIL–PLANT–ATMOSPHERE CONTINUUM 1413

Fig. 3. Comparison of daily integrated measurements of net radiation (RN), soil heat flux (G), sensible heat (H), and latent heat (LE) made in
six vegetative stands with estimates generated by the ALEX model. The root mean square difference (RMSD) between measurements and
model estimates for all fluxes combined is 0.9 MJ day�1 (15% of the mean observed flux), with a coefficient of determination (R2) of 0.97
(Anderson et al., 2000).

operational agricultural forecasting products (Diak et most appropriately run at local scales where these inputs
al., 1998; Anderson et al., 2001). can be specified through in situ measurement.

The ALEX model was developed in comparison with
a significantly more detailed soil–plant–atmosphere Two-Source Model
model, Cupid (Norman, 1979; Norman and Campbell,

Over larger spatial scales, detailed soil profile infor-1983; Norman and Polley, 1989; Norman and Arkeb-
mation will not generally be available with adequateauer, 1991). Cupid models the leaf-level responses of
spatial coverage. Norman et al. (1995b) developed aphotosynthesis (using the formalism of Collatz et al.,
remote sensing version of the ALEX model in which1991, 1992 for C3 and C4 species, respectively) and en-
lower boundary conditions in surface temperature areergy balance to environmental forcings within multiple
prescribed by thermal infrared observations rather thanleaf classes, stratified by leaf angle and depth within
soil modeling (Fig. 2b). This inverted model is somewhatthe canopy. Canopy-level responses are simulated by
less constrained by the need for local measurements andnumerical integration over all leaf classes. Anderson
is therefore better suited for regional-scale applications.et al. (2000) found that the simple analytical canopy
Inversion has been facilitated by the simplicity of theresistance model described here performed as well and
core model, which can be adapted with relative ease tooften better than the more detailed, process-based Cu-
assimilate new forms of input data, including microwavepid model in predicting energy partitioning between soil
observations (Kustas et al., 1998).and vegetation.

The two-source remote sensing model (TSM) parti-While the LUE approach to modeling canopy resis-
tions the composite thermal signature of a heteroge-tance significantly reduces the number of requisite
neous scene into soil and canopy contributions, givenmodel inputs and parameters, ALEX still requires speci-
an estimate of the fractional vegetation cover withinfication of soil thermal and hydraulic properties, as well
the scene. The two-source representation is a majoras boundary conditions in temperature and humidity

above the canopy. Given these requirements, ALEX is improvement over previous single-layer thermal mod-
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els, which required site-specific adjustments to compen- modeled surface fluxes. For the purpose of routine (i.e.,
sate for differences in aerodynamic coupling among the daily) mapping of surface fluxes over regional scales,
soil, canopy, and atmosphere (Kustas et al., 1989; Hall the two-source model has been coupled with the simple
et al., 1992; Stewart et al., 1994; Kubota and Sugita, slab ABL model of McNaughton and Spriggs (1986),
1994). It also provides a means for accommodating the forming the Atmosphere–Land Exchange Inverse model,
dependence of apparent surface temperature on view or ALEXI (Anderson et al., 1997; Mecikalski et al.,
angle, caused by the variable obscuration of the underly- 1999; Fig. 2c). ALEXI is operationally used to estimate
ing bare soil when a canopy is viewed off-nadir (Vining fluxes at 10-km resolution over the continental USA
and Blad, 1992; Norman et al., 1995b). Modifications to on a daily basis (Mecikalski et al., 1999) and at 5-km
model parameterizations of radiation and wind extinc- resolution over smaller subdomains associated with in-
tion for clumped heterogeneous vegetation conditions tensive field experiments.
continue to improve the robustness of the two-source In ALEXI, the lower boundary conditions for the
algorithm (Kustas and Norman, 1999a, 1999b, 2000b). two-source model are provided by thermal infrared ob-

In principle, the TSM can be applied at a wide range servations taken at two times during the morning hours
in spatial scales; however, Kustas and Norman (2000a) from a geostationary platform such as the Geostationary
show that strong subpixel heterogeneity in surface prop- Operational Environmental Satellite (GOES). The slab
erties, such as vegetation cover and soil moisture, can model then relates the rise in air temperature above the
serve to corrupt flux estimates based on pixel-averaged canopy during this interval and the growth of the ABL
model input parameters. Particularly problematic are to the time-integrated influx of sensible heating from
situations where 20 to 80% of the pixel is comprised of the surface. Use of time-differential measurements of
dry, nearly bare soil while the remaining area is highly surface radiometric temperature reduces model sensi-
vegetated and well watered (as is the case in many tivity to errors in absolute temperature due to sensor
agricultural settings). For such surfaces, assuming a calibration and surface emissivity corrections. Impor-
pixel-averaged vegetation cover resulted in significant tantly, the air temperature in the surface layer is not
(�100 W m�2) underestimation of latent heating (note, defined as a boundary condition—it is evaluated by the
however, that this study did not consider surface– model at the TSM–ABL interface and responds to feed-
atmosphere feedbacks, which are likely to reduce the back from both the surface fluxes and the atmospheric
effects of subpixel heterogeneity; see below). Pixel-aver- profile. The upper model boundary in ALEXI is moved
age cover estimates do not properly weight the effects to above the well-mixed ABL where conditions are
of the (typically hotter) bare soil subcomponent, which more uniform at the 5- to 10-km scale.
contributes more strongly to the pixel’s surface tempera- Primary remote sensing inputs to ALEXI include the
ture than to its sensible heat flux due to the insulating morning time rate of change in surface radiometric tem-
effects of the soil surface boundary layer. Subpixel cover perature, downwelling solar and longwave radiation (to
heterogeneity has been addressed by modeling homoge- compute net radiation), and fractional vegetation cover.
neous subpatches directly or statistically (e.g., Avissar A land cover classification map derived from multispec-
and Pielke, 1989) or by applying a pixel-scale vegetation tral satellite data is used in conjunction with the cover-
clumping factor, which yields an effective vegetation fraction map to assign class-dependent surface proper-
cover that more realistically preserves the pixel-average ties, such as surface roughness, albedo, and emissivity.
fluxes (e.g., Kustas and Norman, 1999a). In either case, Ancillary surface and atmospheric data required include
subpixel information on vegetation cover must be avail- an estimate of the wind speed field at 50 m and an
able, preferably at the typical scale of the contrasting analysis of early-morning synoptic radiosoundings of
surface type. temperature (see Mecikalski et al., 1999).

While lower boundary conditions are supplied through One potential application of the ALEXI model is in
thermal remote sensing data, the TSM still requires mapping regional surface moisture indices and vegeta-specification of above-canopy temperature conditions, tion stress. Model estimates of soil and canopy latentwhich are not independent of surface fluxes at the land- heating can be compared with potential rates basedscape scale. Shelter-level atmospheric properties can be on radiation load, atmospheric demand, and vegetationstrongly coupled to local surface conditions, so model cover and used as indicators of available water contentboundary conditions for remote applications generally

in the soil surface (≈0–5 cm) and root zone (≈5–200 cm),cannot be interpolated with adequate accuracy from
respectively (e.g., Campbell and Norman, 1998). Ther-synoptic weather network observations, with a typical
mal methods of stress detection are particularly valuablespacing of 100 km. Just a 1-�C error in the assumed
in that they can provide early warning of impendingsurface-to-air temperature difference can translate into
crop failure (Moran, 2003)—the effects of stress on tran-errors in predicted sensible heating of up to 100 W m�2,
spiration and therefore canopy temperature are detect-depending on wind speed and surface roughness (Nor-
able before actual physiological damage occurs, andman et al., 1995a).
evidence appears in visible/near-infrared indices. In
ALEXI, a morning surface temperature change larger

ALEXI than expected for a given vegetation cover fraction is
taken as indication that transpiration has been throttledOn regional scales, model boundaries must be ex-
back due to stress-induced stomatal closure.tended to include the ABL to capture relevant land–

Figure 4a shows a six-day composite of potential sys-atmosphere feedback; above-canopy conditions can
then be simulated such that they are consistent with the tem (soil � canopy) ET ratio (actual ET/potential ET)
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Fig. 4. (a) Six-day composite of system (soil � canopy) potential evapotranspiration (ET) ratio estimates from the ALEXI model at 5-km
resolution, ending 1 July 2002. The nominal time associated with this image is 1.5 h before local noon, the time of the second GOES
image used to compute surface radiometric temperature change. (b) Six-day accumulated precipitation, based on the National Centers for
Environmental Prediction (NCEP) daily precipitation analysis product. (c) Canopy potential ET ratio. (d) Soil potential ET ratio.

predicted by the ALEXI model over a portion of the generated from the National Centers for Environmental
Prediction (NCEP) Climate Prediction Center daily pre-Midwest USA at 5-km resolution. For comparison,

Fig. 4b shows a six-day accumulation of precipitation, cipitation analysis product. In general, there is good
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qualitative agreement between these two fields. The generate these moisture indices—the surface moisture
status is deduced primarily from a radiometric tempera-model has captured the effects of an extended dry spell

that occurred in northwest Iowa, southwest Minnesota, ture change signal. Therefore, ALEXI can provide inde-
pendent information for updating soil moisture vari-and eastern Nebraska where the potential ET ratio is

significantly reduced. A series of rainfall events along ables in more complex regional models.
Validation of the ALEXI algorithm has been per-the Iowa–Wisconsin border, central Wisconsin, and in

Illinois have kept ET at near potential rates in these formed using local measurements of radiometric tem-
perature made with ground-based infrared thermome-areas. Maps of canopy and soil potential ET ratio in

Fig. 4c and 4d indicate that while the soil surface layer ters, which sample an area on the order of tens of meters.
With local inputs, ALEXI flux predictions agree wellhas dried substantially in many parts of the domain,

canopy transpiration has been curtailed only where the with tower measurements made over canopies of a vari-
ety of C3 and C4 plant species (Fig. 5; see also Andersonextended dry down has occurred. This behavior is ex-

pected as plants have the ability to mine water from et al., 1997). In practice, however, ALEXI is more suit-
ably applied to satellite-based thermal data acquired atdeep in the soil root zone.

Note that no information regarding antecedent pre- the 5- to 10-km scale—the scale at which atmospheric
forcing by organized land surface behavior becomescipitation or moisture storage capacity was required to

Fig. 5. Comparison of instantaneous measurements (1.5 h before local noon) of net radiation (RN), soil heat flux (G), sensible heat (H), and
latent heat (LE) made in four vegetative stands with estimates generated by the ALEXI model using local, ground-based inputs. The root
mean square difference (RMSD) between measurements and model estimates for all flux components is 54 W m�2 (19% of the mean observed
flux), with a coefficient of determination (R2) of 0.95.
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effective. Flux predictions at these scales are inherently hybrid mode, the atmospheric component of ALEXI is
difficult to validate; for direct comparison with flux used at the large scales it is best suited for while the
tower measurements, which typically sample a footprint surface component can be applied at much finer scales.
on the order of hundreds of meters, the regional-scale High-resolution flux estimates from the fetch influenc-
model predictions need to be spatially disaggregated. ing conditions at the height of the flux sensor can then

be reaggregated through a weighted footprint analysis
DisALEXI (Schuepp et al., 1990; Horst and Weil, 1992; Schmid,

1994) and compared with tower or aircraft flux mea-Flux disaggregation (or downscaling) requires that
surements.important forcing variables be identified that can be

Figure 6a shows a map of surface radiometric temper-determined reliably at the target scale. The Disaggre-
ature at 30-m resolution made with the Thermal Infra-gated ALEXI (DisALEXI) algorithm (Norman et al.,
red Multispectral Scanner (TIMS; Palluconi and Meeks,2003) uses high-resolution surface temperature and veg-
1985), which was flown by aircraft during SGP97 overetation cover information acquired by aircraft- or satel-
a study area near El Reno, OK (French et al., 2000). Alite-borne instruments such as the Land Remote Sensing
map of disaggregated latent-heating estimates gener-Satellite Enhanced Thematic Mapper Plus (Landsat
ated from these high-resolution surface temperatureETM�), the Advanced Space-Borne Thermal Emission
data is shown in Fig. 6b (from Norman et al., 2003).Reflectance Radiometer (ASTER), or the Moderate-
The last significant rainfall occurred 4 d prior; thus,Resolution Imaging Spectroradiometer (MODIS).
fields of bare soil (harvested winter wheat) are hot andDisALEXI is a two-step process (Fig. 2d). First
exhibit low evaporation rates (black in Fig. 6b). DenselyALEXI is executed at a resolution of 5 km to diagnose
vegetated stands in riparian zones around a stream net-an above-canopy air temperature that is consistent with
work crossing the modeling domain remain cool andthe cover fraction and temperature change associated
with sufficient water to maintain near-potential transpi-with a 5-km patch of landscape and with the overlying
ration rates (white in Fig. 6a). The 30-m latent heatboundary-layer dynamics. The reference level of this
flux estimates, reaggregated using the footprint analysisinterface air temperature must be high enough that the
technique of Schuepp et al. (1990), compare well witheffects of surface heterogeneity are small and conditions
flux measurements made at four eddy correlation towersare relatively uniform over a 5- to 10-km area. Wieringa
within the study area, situated in pasture sites of varying(1986) defines such a reference as “the blending height,”
leaf area index and in a site over bare soil (see Fig. 7;which is typically on the order of 50 m above ground
tower locations are demarcated in Fig. 6a). The levellevel (Raupach and Finnigan, 1995).
of agreement apparent in Fig. 7 gives us some confi-In Step 2, the two-source model is applied to high-
dence that the 5-km aggregated flux estimates fromresolution cover and temperature data, holding the air
ALEXI are also reasonable in this case.temperature at the blending height constant over the

entire GOES pixel at the ALEXI-derived value. In this The DisALEXI disaggregation algorithm is relatively

Fig. 6. Maps at 24-m resolution of (a) surface radiometric temperature (TR) and (b) disaggregated latent heat flux estimates (LE) over an
experimental study area near El Reno, OK, for 2 July 1997 (Norman et al., 2003). Stars on the radiometric temperature map indicate the
locations where the measurements shown in Fig. 7 were acquired.
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grid. They found that as long as the characteristic length
scale of surface heterogeneity was smaller than 5 to 10
km, and the topographical features were smaller than
about 200 m, there was no significant impact on the
mean characteristics of the convective boundary layer.
These findings lend support to the tile disaggregation
technique used in DisALEXI, which assumes uniform
atmospheric conditions on the 5- to 10-km scale and
that horizontal fluxes between tiles are small compared
with vertical fluxes.

The prescription of surface flux boundary conditions
in large-eddy simulations, however, short-circuits part
of the full feedback loop that exists in nature between
the land and atmosphere. The fixed fluxes cannot re-
spond to any heterogeneity that may be transmitted into
the ABL from the surface.

In a new study by Albertson et al. (2001b), surface
fluxes forcing an LES model were computed internally
by coupling the LES model with the two-source model
(TSM-LES). Microwave, thermal, and normalized dif-Fig. 7. Comparison of instantaneous measurements (1.5 h before local
ference vegetation index (NDVI) images collected dur-noon) of net radiation (RN), soil heat flux (G), sensible heat (H),
ing the Monsoon ‘90 field experiment (Kustas andand latent heat (LE) made in four sites of varying leaf area index

(LAI) with 30-m flux estimates disaggregated using the DisALEXI Goodrich, 1994) in Arizona were used to simulate field
technique. The root mean square difference (RMSD) between conditions with realistic spatial structure, providing sur-
measurements and model estimates for all flux components is 38 face boundary conditions in soil moisture, surface tem-W m�2 (12% of the mean observed flux), with a coefficient of

perature, and vegetation cover for the two-sourcedetermination (R2) of 0.98 (Norman et al., 2003).
model. The use of state boundaries, rather than flux
boundaries, allows the surface fluxes to adjust to localsimple and computationally undemanding and is there-
air properties that are influenced by upwind patches.fore well suited for operational applications such as site-

Albertson et al. (2001b) examined the statistical prop-specific agricultural and water resource management.
erties of modeled spatial variability in air temperatureFrom a research standpoint, however, it does not fully
and found that variability decayed logarithmically withcapture all of the important feedbacks coupling the land
height above the surface. This type of analysis providesand atmosphere. In reality, turbulence generated over
guidance for assessing errors in tile methodologies, suchthe hot, bare soil regions in Fig. 6 may be having some
as used in DisALEXI, where conditions at height areimpact on fluxes from adjacent vegetated fields, but in
held constant over a patch of landscape. They also foundDisALEXI, the fluxes from these patches are horizon-
that the decay is more rapid for variability at smallertally decoupled.
spatial scales. Larger structures in surface temperature
are transmitted more effectively into the atmosphere,

Large-Eddy Simulation indicating enhanced coupling at surface length scales
greater than 500 to 1000 m.This question of turbulent coupling between adjacent

In another study, Kustas and Albertson (2003) com-heterogeneous patches in a landscape is a current topic
pared TSM-LES–derived flux fields with fluxes gener-of investigation in large-eddy simulation (LES) studies.
ated with the two-source surface model applied as inThe goal in LES is to resolve the large, kilometer-scale
DisALEXI, holding atmospheric conditions at 10 meddies, which carry 80 to 90% of the energy in the
above ground level fixed at regionally averaged valuesconvective boundary layer, while parameterizing the ef-
obtained from the LES. The variance in the remotelyfects of smaller subgrid-scale eddies, which act mainly
sensed surface temperature field was increased by twoto dissipate turbulent energy. Large-eddy simulations
(2�) and three (3�) times that in the original field toare run on a three-dimensional grid, typically with a
evaluate the effect of the increased surface temperaturehorizontal resolution of 100 m and a vertical extent
contrast on surface–atmosphere coupling. The prescrip-exceeding the scale height of the ABL, about 2 km.
tion of uniform atmospheric properties as an upperMason (1994) provides a review of the LES modeling
boundary condition resulted in significant differencestechnique.
in partitioning of available energy between latent andTo date, most large-eddy simulations have been con-
sensible heat fluxes (expressed in terms of the Bowenducted with fixed flux boundary conditions, often pre-
ratio, �) for the hotter, drier areas in the modelingscribed in artificial patterns over the land surface to
domain, particularly for the 3� case (Fig. 8). In thestudy atmospheric response to forcings of well-defined
TSM-LES, local air temperature and humidity adaptedscale and strength. Avissar and Schmidt (1998), for ex-
to the enhancements in surface temperature, therebyample, studied effects of surface flux patchiness on the
dampening the response of surface fluxes to variabilityABL by imposing sinusoidally varying bands of sensible

and latent heating at the lower face of the LES model in surface conditions. Through such comparisons, it may
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Fig. 8. Spatial fields of Bowen ratio values computed by the TSM-LES (�LES) and the TSM with uniform upper boundary conditions at 10 m
(�EQ2) for three cases where the variance (�) in the input surface temperature field was unchanged (1�) and increased by 2� and 3�.

be possible to derive scale- or case-dependent correction spectrum (e.g., Avissar et al., 1998), providing further
insight into how land surface heterogeneities are ex-factors that could be applied to operational methodolo-
pressed in the atmosphere.gies such as DisALEXI.

This coupling of LES with land surface modeling,
Mesoscale—ALEXusing realistic state boundary conditions derived from

remote sensing, is a new and exciting development that The prognostic version of ALEX has been embedded
has been made possible by recent advances in computing within the Cooperative Institute for Meteorological Sat-
power and parallel processing techniques. Output from ellite Studies (CIMSS) Regional Assimilation System
models like the TSM-LES can be compared directly (CRAS) for purposes of improving the model land sur-

face representation (Diak et al., 1998). CRAS assimi-with lidar observations of the atmospheric turbulence
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lates radiosonde and surface synoptic data at 1200 h the scene is sufficiently clear of clouds. This suggests
UTC, along with satellite-derived cloud data, into a that a symbiosis with a more time-continuous model
regional forecast run at 40- to 80-km spatial resolution may be beneficial, with the remote sensing model pro-
and 48 h duration (Leslie et al., 1985; Diak, 1987; Diak viding updates of critical parameters that are difficult
et al., 1992; Wu et al., 1995). to model physically (such as soil moisture) whenever the

The CRAS model has become integral to several op- remote sensing data are available. As such, the models
erational applications of the ALEX model suite. The described here should be useful for applications in rela-
forecast component of CRAS provides prognostic tively short time-scale applications, such as numerical
boundary conditions in air temperature, wind speed, weather prediction, crop yield forecasting, and modeling
and vapor pressure for cranberry frost forecast and po- transient hydrologic phenomena.
tato late blight severity models based on ALEX, run At present, the ALEXI and DisALEXI models do
daily in several growing regions in Wisconsin (Diak et not consider the effects of surface topography, for exam-
al., 1998; Anderson et al., 2001). The analysis component ple, the effects of local slope and aspect on surface
creates initialization fields for CRAS, analyzing synoptic radiation receipt (e.g., Dozier and Frew, 1990; Dubayah,
surface and radiosonde observations onto a three-dimen- 1992). Topographic corrections implemented in the Cu-
sional grid in a manner consistent with the model phys- pid model will be adapted for the two-source model
ics. Gridded fields of surface wind and atmospheric structure in the near future.
temperature profile from the CRAS analysis are input
into daily regional ALEXI model runs (Mecikalski et

CONCLUSIONSal., 1999). The compatibility between the CRAS and
ALEX/ALEXI models for such integrated applications In summary, the strength of the ALEX model, the
is enhanced by the common two-source model of surface core of the suite of models described here, is that it is
exchange embedded in each. simple yet fairly robust, it requires only a few empirical

and tunable parameters, and it can be easily inverted
Model Limitations and coupled with other models, providing means for

assimilating remote sensing data at various spatialWhile the models described here have utility in de-
scales. Because of its flexibility, this core land surfacescribing current surface conditions, they are generally
representation provides synergy among a suite of mod-not well suited for long-term predictive studies, such as
els covering a wide range in complexity and spatial scalesimulating climate response to elevated levels of CO2.

The LUE relationships intrinsic to ALEX are based in (Fig. 1): the forward ALEX model for local forecasting,
part on empirical observations of plant physiological DisALEXI for field-scale applications, the TSM-LES
response under current ambient CO2 conditions; appli- model for studying turbulence-scale feedback, ALEXI
cation under altered conditions would require a close for estimating regional-scale fluxes, and a mesoscale
examination of environmental feedback on canopy version for providing regional forecasts and analyzing
LUE. Climate change prediction is an example where synoptic weather data for use in smaller-scale appli-
more complex land surface models, incorporating de- cations.
tailed plant physiological response functions, may be The modeling framework outlined in Fig. 1 has the
necessary. potential of addressing the impact of variability in soil

Surface flux models dependent on satellite remote and vegetation conditions on land–atmosphere feed-
sensing data are also subject to stringent temporal limi- back, focusing on two important characteristics of sur-
tations. Data are available only at satellite overpass face heterogeneity. One is related to the amplitude or
times (often once daily or biweekly) and then only when severity in contrast across a landscape as investigated

by Kustas and Albertson. (2003). The other is the areal
extent within a model grid or pixel that is comprised of
different land cover conditions (e.g., Kustas and Nor-
man, 2000a). Both aspects of heterogeneity can be stud-
ied from a bottom-up or upscaling perspective where
the consistency in the heat flux output from DisALEXI-
TSM-LES and ALEXI is used as a means for assessing
implicit/explicit upscaling assumptions. From a top-
down or disaggregation perspective, the spatially distrib-
uted high-resolution fluxes derived from DisALEXI
and TSM-LES can be contrasted to evaluate the impor-
tance of the land surface–atmosphere feedbacks. Coor-
dinated field studies such as the 2002 Soil Moisture–
Atmospheric Coupling Experiment (SMACEX; Kustas
et al., 2003) provide data for model validation at multi-
ple scales and heights (e.g., Anderson et al., 2003): tower
and aircraft fluxes, atmospheric soundings, volume-im-
aging lidar, and aircraft and satellite remote sensing
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Avissar, R., and T. Schmidt. 1998. An evaluation of the scale at whichimagery (Eichinger et al., 2003; Prueger et al., 2003;
ground-surface heat flux patchiness affects the convective boundaryMacPherson et al., 2003).
layer using large-eddy simulations. J. Atmos. Sci. 55:2666–2689.

In more general terms, a process has evolved over Ball, J.T., I.E. Woodrow, and J.A. Berry. 1986. A model predicting
time by which we are slowly filling gaps in our under- stomatal conductance and its contribution to the control of photo-

synthesis under different environmental conditions. p. 221–225.standing of how upscaling and downscaling can be ac-
In J. Biggins (ed.) Progress in photosynthesis research. Nijhoff,complished (Table 2): We build complex models of
Dodrecht, the Netherlands.land–atmosphere interaction at small scales, extract the Bastiaansen, W.G.M., M. Menenti, R.A. Feddes, and A.A.M. Holt-

essence of this small-scale behavior in the form of pa- slag. 1998. A remote sensing surface energy balance algorithm for
land (SEBAL). J. Hydrol. (Amsterdam) 212–213:198–212.rameterizations, and incorporate these parameteriza-

Bonan, G.B., D. Pollard, and S.L. Thompson. 1993. Influence of sub-tions into models on the next larger scale. Similarly,
grid-scale heterogeneity in leaf area index, stomatal resistance,larger-scale models reveal valuable information about
and soil moisture on grid-scale land–atmosphere interactions. J.

the faulty assumptions we might be making at smaller Clim. 6:1882–1897.
scales by neglecting important feedbacks. Boni, G., D. Entekhabi, and F. Castelli. 2001. Land data assimilation

with satellite measurements for the estimation of surface energy
balance components and surface control on evaporation. WaterACKNOWLEDGMENTS Resour. Res. 37:1713–1722.
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